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ABSTRACT 

This report considers the problem of fusing signature data from a variety of sensors 
operating over different frequency bands and interrogating a target over diverse angular 
positions. In particular, the report develops (1) a framework for fusing signature data for 
this diverse operating scenario, (2) candidate sensor-fusion algorithms, and (3) a general 
formulation characterizing the practical problem of cohering data associated with 
multiband spatially distributed sensors. The report illustrates the formulation by 
considering numerous examples, transitioning from simple illustrative targets to 
progressively more difficult and physically realistic targets. The report begins with a 
constant-amplitude point-scatter model, progresses to three-dimensional targets, and ends 
by illustrating enhanced image-fusion algorithms applied to static-range data. 

This report can be considered a complement to the ultrawide-bandwidth 
development presented in [1], which develops the general formulation for fusing signature 
data from sparse-band collocated sensors. The report focuses primarily on the 
complementary problem of sparse-angle sensor fusion, where three main effects 
complicate the fusion process: specular responses, diffraction from discontinuities, and 
shadowing. These effects prohibit the use of a constant-amplitude point-scatter model for 
characterizing the target over broad angular regions. 
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1.   INTRODUCTION 

1.1     OVERVIEW 

There is considerable interest within the ballistic missile defense community for the various theater 
and area defense systems to operate as a family of systems. A key ingredient in fully accomplishing this 
objective is the capability to fuse signature data from a variety of sensors operating over different frequency 
bands and interrogating a target over diverse angular positions. This report develops (1) a framework for 
fusing signature data for this diverse operating scenario, (2) candidate sensor-fusion algorithms, and (3) a 
general formulation characterizing the practical problem of cohering data associated with multiband 
spatially distributed sensors. The report illustrates the formulation by considering numerous examples, 
transitioning from simple illustrative targets to progressively more difficult and physically realistic targets. 
The report begins with a constant-amplitude point-scatter model, progresses to three-dimensional targets, 
and ends by illustrating enhanced image-fusion algorithms applied to static-range data. 

Many different measures might be used to quantify the enhancements gained from fusing signature 
data; this report considers using an image processor to combine radar cross section data from multispectral 
distributed sensors whose frequency bands and angular coverage may or may not overlap. The image that 
results provides a higher degree of spatial resolution than would be available from each sensor 
independently. This enhanced image might then be used in subsequent processing to identify and 
characterize specific features on the target. Limitations to using the conventional image integral as the data- 
fusion processor are also discussed, and enhanced imaging techniques are developed to provide improved 
results. 

This report can be considered a complement to the ultrawide-bandwidth development presented in 
[1], which develops the general formulation for fusing signature data from sparse-band collocated sensors. 
This report focuses primarily on the complementary problem of sparse-angle sensor fusion, where three 
main effects complicate the fusion process: specular responses, diffraction from discontinuities, and 
shadowing. These effects prohibit the use of a constant-amplitude point-scatter model for characterizing the 
target over broad angular regions. 

Section 1.2 introduces the motivation for this study and discusses what components must be included 
in an image processor in order to obtain the best-possible image from multisensor signature data. Section 2 
reviews some concepts related to imaging as a data-fusion mechanism, such as proper data formatting to 
obtain properly focused images and the proper construction of the image using conventional 
image-processing techniques. Section 3 addresses data coherence and compensation for the contaminated 
data that result from spatially separated and sparse-band sensors; a general procedure is developed for 
cohering sparse-band, sparse-angle data from separate sensors. The coherence technique developed in [1] 
for sparse-band collocated sensors is extended to the more general case, and a striking duality is developed 
between cohering sparse-band collocated sensors and sparse-angle narrowband sensors. Section 4 
demonstrates results for several types of targets, ranging from a constant-amplitude point-scatter model to 
a three-dimensional canonical shape, and demonstrates the practicability of these techniques using 
static-range data from a canonical target of interest. To effect sparse-angle fusion, a new basis-expansion set 
is introduced that employs a localized all-pole model over a limited angular sector and then uses this basis 



set for fusing the data between angularly spaced sectors. Examples of preprocessing data for mutual 
coherence and multidimensional ultrawide-bandwidth processing are considered in Section 5. 

1.2     MOTIVATION 

The increased target resolution of today's wideband radar systems has significantly improved the 
capability of ballistic missile defense systems for real-time discrimination and target identification. 
Advanced signal-processing methods have further improved the resolution achievable from processed radar 
returns. The extension of these techniques to coherent combination of data from multiple sensors operating 
over different frequency bands is discussed in [1]; in particular, an algorithm was developed that could 
compensate for the lack of mutual coherence between radars operating independently over sparsely located 
subbands, allowing for the fusion of multisensor data to obtain an ultrawide-bandwidth characterization of 
the target in track. This algorithm has been exploited in considerable detail for nearly collocated sensors; 
this report considers this fusion process for sensors that are sparsely located in angle. 

Concomitant with these processing developments, the ballistic missile defense community has shown 
considerable interest in the various theater- and area-defense systems operating as a family of systems. Joint 
operation of these sensors can take on several levels of complexity, as illustrated in Figure 1. This figure 
defines a hierarchy of possible jointness functions, beginning with the simplest and evolving to more 
sophisticated fusion processes. The hierarchy indicated by "function of jointness" might be as simple as 
sharing intelligence data or combining tracks from multiple sensors in order to provide a more accurate 
target cue, or might be as complex as correlating and/or combining radar cross section (signature) data in 
order to share target and identification features and/or to coordinate engagement decisions. This last, the 
highest function of jointness in this hierarchy, is addressed in this report: integrating signature data from 
spatially distributed multiband sensors in order to attain maximal characterization of the targets of interest 
in a ballistic missile defense engagement. 

Figure 2 shows some components that must be incorporated into a fusion-based central processor 
whose input is radar data from multiple sensors. Though several candidate processors could have been used 
for this study, this report focuses on image processing, which requires several ingredients for fusing data 
between multiple sensors: sensor coherence, a target-motion solution, and a suitable target model. 
Preprocessing the data to compensate for the various data-contamination effects that result from sensors that 
are spatially separated or operating over different frequency bands is necessary before an image can be 
generated. Once the data have been preprocessed, an image can be generated using either conventional 
image-processing algorithms (see Section 2) or enhanced data-fusion image processing that employs the 
sparse-band or sparse-angle processing techniques that are developed later in this report. 
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Figure 1. Family-of-systems elements. 
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Figure 2. Model of central processor, showing inputs, possible components (dotted lines), and outputs. 



Figure 3 illustrates a scenario in which two spatially separated radars are interrogating an unknown 
target. Sensors 1 and 2 are located at distances R^ and R2, respectively, from the target; in general, the 
sensors operate over different frequency bands. The examples in this report assume that both sensors have 
the target in track and that a motion estimate is available. Although the effects of an error in the motion 
estimate are not considered in this report, the motion estimate is a key ingredient in associating a sequence 
of temporal measurements for radars operating independently (perhaps at different pulse repetition 
frequencies) with corresponding look angles to the target. (Bistatic processing is also possible for sensors 
operating in the same or in overlapping bands; however, bistatic processing is not considered here.) Methods 
for mutually cohering and formatting the data will be presented, as sensor coherence and proper data 
formatting are essential before coherent combination of the data. Mutual-coherence errors occur because of 
range-estimation errors, hardware differences, or angle-bias errors. 

This report studies how the final image is affected by adding or removing components from the 
generic image processor shown in Figure 2. The goal is to obtain the best-possible image from multisensor 
data, so that the resultant image can be fed into a target characterization process for full characterization. 

Sensor 1 Sensor 2 

Figure 3.  Two spatially separated sensors interrogating an unknown target. 



2.   CONCEPTS 

2.1     DATA FORMATTING 

This section reviews the methods that are commonly used to obtain focused images for 
continuous-wave and wideband signals. The review parallels the development of [2] and places the notation 
used in this report into a commonly accepted scheme. The review includes polar formatting of data, as this 
method will be used in a novel way within the context of ultrawide-bandwidth expansion for high-resolution 
imaging (see Section 4.1.2). 

The two-dimensional geometry for analyzing radar return signals from an arbitrary target with a 
number of scattering centers at coordinates (xm,ym) is shown in Figure 4. The aspect angle, <p, is the angle 
between the x-axis and the radar line of sight (RLOS) vector; the target is assumed to be located at the center 
of this x -y coordinate system. As the target rotates, the RLOS vector sweeps through the target space, 
sampling a range of viewing angles of the object. The position of the RLOS vector is given by 

/?((p) = cos(px+ sincpv   , 

where the vectors x and y denote unit vectors in the two-dimensional coordinate system. 

(1) 

Figure 4.  Two-dimensional geometry of target space. 



The slant-range #m(<p) of the target point located at (xmym) is defined by projecting the target point 
onto the RLOS vector; i.e., 

*«(<P) =-^coscp+j^siiup   . (2) 

This expression is of fundamental importance for radar signal processing: e.g., it tells that the slant-range 
history of any target point is a sinusoidal function of the target's rotation angle, 9. Now let the target be 
illuminated with a signal of the form T{t) = ^ . Assuming that the target consists of point sources located 
far from the radar, the received signal for each point source is given by 

•"T—H 
*«(') = °c,me > (3) 

where the term 2/?m(cp)/c corresponds to the propagation delay between transmission of 7X0 and reception 
of em(t), referred to a target-centered coordinate system. The constants c and ac denote the speed of 
propagation and the radar cross section of the point source, respectively, where ac is used for the complex 
cross section and is defined such that a = laj . The baseband received signal for targets containing M 
pointlike scattering centers is obtained by demodulating the signal and coherently summing the responses 
from individual scatterers and is given by 

M _ M -ja-Rm(<f>) 

•<o- E^°'- Ev  c      • w 
m = 1 m = 1 

When a target is scanned over a range of frequencies and viewing angles, Equation (4) may be interpreted 
in terms of a two-dimensional target function £(/",<p) , which can be written as 

*^ -7-2i(jtmcos(p+^msin<p) 
Etf,q>) =    L Ocme . (5) 

m= 1 

Equation (5) illustrates that the phase of the received signal varies as a function of radar look angle. These 
phase variations introduce focusing errors into an image by causing apparent motion of the objects through 
resolution cells; this motion in turn results in a smeared image for objects offset from the center of the 
image space. A focused image therefore requires that a phase correction be applied to every term of the sum 
for each angle cp and each point (x,y). This requirement leads to an image processor whose form is the 
conventional image integral: 

.. j—-(.xcoscp +ysincp) 

I{xy) =  J )E(fw)e   C dfdq      . (6) 

Though the image integral of Equation (6) is the correct operation for focused imaging, an image processor 
that could be expressed in the form of a Fourier transform integral would be more desirable for 



computational purposes. There are two methods that are commonly used to achieve this: small-angle 
approximations (linear imaging) and polar formatting. 

2.1.1     Linear Imaging 

Let Equation (6) be partitioned into a sum of integrals over small angular segments and frequency 
steps: 

cp = cpft + Acp 

f = f0 
+ &f    . (7) 

where qk is the center of the segment, Acp are the angular steps about <pk, f0 is the center frequency, and 
A/" is the frequency step size. The integral of Equation (6) can now be written as 

I(x,y) * 

Anif + A/) 
(•   ,• j (xcos(cpt + A<p)+>'Sin((pi + A<p)) 
J  \E(f0 + Af,i?k + A(p)e       c dAfdAy      . 

Acp A/ 

Using the identities 

cos(cpA. + Acp) = coscp^cosAcp- sincp^sinAcp 

sinCcp^ + Acp) = sincp^cosAcp - sin Acp sin cp^. 

and the relations 

sinAcp = Acp 

cosAcp = 1 

A/Acp « 1    , 

Equation (8) becomes 

(8) 

4nf 
y—Ocoscp^ + ysmcp,,) 

I(x,y) m Z^e x 

47t 47t/o 
.   . J—(jtcoscpjt + ys\mpk)Af j (—jcsincp^. +ycoscpit)A(p 
J   \E(f0 + Af,<pk + Ay)e c e   C dAfdAy       .        (9) 

Acp A/" 



Equation (9) is a two-dimensional Fourier transform on the (A/,A(p) variables and can be solved efficiently 
using the discrete Fourier transform. The coefficient of the factor A/ in the exponent of Equation (9) 
represents the range to the mth scatterer, and the coefficient of Acp represents the cross range of the mth 

scatterer, relative to the center of the (xj>) system; hence, wide bandwidth produces improved range 
resolution, and wide angular coverage produces improved cross-range resolution. 

It is instructive to observe what happens if an image is generated by processing £(/",cp) in Equation (5) 
over large angular spans with a two-dimensional Fourier transform rather than the integral of Equation (6). 
An equivalent way of expressing £(/",(p) is 

Anfrm 
^ -y-^-cos(cp-<pm) 

E(f&) = Lame (10) 

Figure 5 shows points in the (/",(p) plane where the phase of E(f,<p)  is constant and equal to multiples of 
27t: 

2nn = —^-cos((p-(p)    . (ID 

Figure 5 plots Equation (11) for w - 1,5, 10,..., 95,99, 0 GHz <f< 10 GHz , r = 1.5 , and -j < cp - cp' < ^. 

isophase Lines of Reflected Signal 

Figure 5. Isophase lines of reflected signal in (/",cp) space. 



By differentiating Equation (11) with respect to / and cp, respectively, 

dn _ 2r 
~b~f ~ 7( 

dn _ -4nfr 

df      c
c°s(<P-^) 

dcp c 
• sin(<p-q>')   . (12) 

Clearly a one-dimensional Fourier transform over/ with constant <p will yield the correct range profile, as 
the spacing between isophase lines is constant along / for a given cp ; however, a one-dimensional Fourier 
transform over cp with constant / will not yield the correct cross-range profile, as the spacing between 
isophase lines varies along cp for a given /. This variation in phase produces an unfocused image when 
£(/",cp) is processed in a rectangular format using the two-dimensional Fourier transform. Figure 5 also 
provides insight as to why the small-angle approximation in Equation (9) produces a focused image: over 
limited regions of the (/jcp) plane the spacing between isophase lines is approximately equal in both f 
and (p. 

2.1.2     Polar Formatting and Extended Coherent Processing 

Polar formatting, the second Fourier-based method for producing focused images, maps the curved 
isophase lines of Figure 5 into straight, parallel lines that allow use of the two-dimensional Fourier 
transform with wide-angle data. The mapping of E(f,y) -> E{u,v) is accomplished as follows. Using the 
relations 

471/ 
u = —-coscp 

c 

v = —-sincp   , (13) 
c 

the image integral of Equation (6) can be rewritten as 

I(x,y)= \\E{u,v)J{ux + vy)dudv    , (14) 

where E(u,v) is £(/",cp) resampled in nonuniform increments of / and <p corresponding to uniform 
increments of u and v. Equation (14) is traditionally used to achieve wide-angle imaging beyond those 
angular sectors for which linear imaging is valid. Resampling can be done using any number of 
interpolation methods. The transformation of Equation (13) maps a rectangular region in (/» space into 
an annular sector in (u,v) space, as shown in Figure 6. 



*(f.t) 

Figure 6. Mapping of rectangular region of (£(p) space to annular sector of (u,v) space. 

Figure 7 shows the isophase lines of Equation (14) plotted using 

2nn — ux + vy (15) 

where x = /-coscp' and y = rsincp'. The curved lines of Figure 5 are now straight, and the parallel lines are 
rotated from the v-axis by the angle <p'. Once this transformation has been accomplished, a focused image 
can be generated by processing the array of polar-formatted data using a two-dimensional Fourier 
transform. For continuous-wave imaging, the two-dimensional Fourier transform of Equation (14) 
becomes a line integral along a circular arc of radius (4nf0)/c in (u,v) space. 

2.2    RESAMPLING FOR POLAR FORMATTING 

Any number of interpolation methods might be employed for resampling data onto a uniform 
rectangular grid in (u,v) space. One fast and accurate interpolation scheme is based on a bilinear 
interpolation; it is the method used m this work. Figure 8 shows measured data in (/jcp) space overlaid onto 
a rectangular grid in (u,v) space. The measurement regions in (f,q) space have been chosen as they would 
appear for two sensors separated in frequency and in angle; the (u,v) grid is chosen to encompass the entire 
measurement region. The goal is to extrapolate the data over the measurement region to this much-larger 
space, providing an image with increased sharpness and enhanced resolution. 

10 



> u 

Figure 7. Isophase lines of reflected signal in (u,v) space. 

To find any of the desired points in (w,v) space, use the four nearest neighbors in (/;<p) space to construct a 
system of equations given by 

a\f\ +a2<?\ +a/1q>i+a4 = £(/p<Pi) 

a1/2 + a2cp2 + a3/2(p2 + a4 = E(f2,(f>2) 

a\fl + a293 + ^3/393 + a4 = W3,q>3) 

a ,/4 + a2cp4 + fl/4<|)4 + a4 = £(/"4,(p4) (16) 

which can be rewritten in matrix form as 

f\ <pl/l<pl 1 a\ E(f\M\) 
f2 (p2 /2cp2 1 a2 E(f2,y2) 

h 93 /3<P3  l a3 Eif^i) 

U <P4 /4<P4 l ?\ E(fA,^A) 

(17) 

11 
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Figure 8. Data points in (/j(p) space overlaid on a rectangular grid in (u,v) space. 

Figure 9 is a magnification of Figure 8 and shows more clearly the measured data points in (f,<p) space that 
are nearest neighbors to the desired data point in (u,v) space. Using Equation (17), determining 
coefficients a{, ...,a4 is straightforward. Once ax, ..., a4 are known, the desired point in (a,v) space can be 
found whose four nearest neighbors were used in Equation (16) and Equation (17). 

12 



6    • 1    0    ' 6 0 • ' 6 1      0      ' 

18 - 

0 . • • 0 0 0 0 0 
1 6 - 

1 4 
0 0 .  .  • 0 '  ' 0 0 0 

a 1.2 .••••• 

> 
>s 0 0 0 , 0 •   • • • 0 ' 0 

S   1 

it 
l508 

0.6 

0 

0 

0 0 0 0 0 

0 0 0 0 0 
04 

0 0 

1             1 

0? 

n i       , i 1             1 1 

9.2 9.4 9.6 9.8 10 10.2        104        10.6        10.8 

Polar Frequency, u (GHz) 

Figure 9. Magnification of Figure 8. showing nearest neighbors (dots) to desired data points (circles). 

2.3     MODAL EXPANSION AND POLES IN (£<p) SPACE 

The utility of using the two-dimensional Fourier-transform-based method defined by Equation (14) 
for image processing becomes clear by rewriting Equation (5) in terms of the («,v) variables: 

-t. ,      ^ -Juxm -ivyn E(f,<$>) =    £ ocme        e (18) 

m = 1 

Thus a constant-amplitude point source located at (xm,ym) appears as a pure sinusoid in («,v) space. This 
property is exploited further in Section 4.1 to develop an ultrawide-bandwidth fusion algorithm based on 
two-dimensional pole spectral-estimation techniques for ideal pointlike scatterers. This section uses a 
commonly-known modal expansion to contrast this (u,v) space simplicity to (/;<p) space processing. 

13 



The modal technique described here represents a signal in (/;cp) space as a sum of two-dimensional 
radiation modes given by 

+00 

EV,<?) =    I   Dn{f)Jm    . (19) 
n = -00 

Motivation for using the modal representation of Equation (19) comes by expanding the exponential of 
Equation (10) into an infinite sum of cylindrical-wave functions of the form 

4it/r 

e =    h J   Jny )e , (20) 
n = -00 

which allows the two-dimensional target function of Equation (10) to be written as 

+00 .   ,. 

E(f,(?) = JLcr   L j M——e 

m 
n = -00 

rnT(4*frm\-Jnv'm 

=   Z    If        v c J      1 jtt*   • (21) 

»«<f) 

As indicated in Equation (21), the mode coefficients £>„(/) are defined by the bracketed term. If the mode 
coefficients Dn(J) could be estimated from known data measured over a sparsely populated angular 
domain, Equation (21) could be used to extrapolate the signal £(/"0,(p) for the entire interval 
0 deg < cp < 360 deg; both range and cross-range resolution could then be improved by estimating the target 
signature over a full 360-deg rotation. 

Consider now the special case where the argument of the Bessel function in Equation (22) is large (as 
in high-frequency applications where all-pole modeling techniques are valid; i.e., 4nfrm/c » 1), where the 
large-argument expansion of the Bessel function can be used: 

j»(x)xMccos( 
nit    71 

-y-4. 

1 
2nx 

'Ai-f-3   -A'-¥-f 
e + e 

\ 

(22) 

Substituting Equation (22) into Equation (21) and truncating the infinite summation to an appropriate 
number of terms gives 

14 



N 

£(/!<p) =   Z i Z<V "« 
n = -N^ m Wfs 

i—r -J-2 -J-A   -i—r +JT +J-4 
e e      e     + e e       e w nq> 

(23) 

where N» (47t/|/-'J )/c . Equation (23) shows that in the angle domain, 4/V+ 1 pole combinations are 
generally required to represent each physical scatterer when viewed over the entire interval 
0 deg < cp < 360 deg. As N « (47i/|r'm| )/c can be quite large for high frequencies, there is motivation for 
the study of alternatives to all-pole modeling in the angle domain. For example, a 1-m target at X-band 
produces JV«420, SO that roughly 1680 poles are required to characterize each scatterer over the entire 
interval! 

2.4     MULTISENSOR FUSION: BASELINE PROCESSOR 

Once the data from each sensor have been preprocessed for mutual coherence and transformed into a 
polar format, they might be combined using an image integral that is the coherent sum of subband subsector 
image integrals calculated from the output of each of N sensors, given by 

JWy("* + v'Wv =   j \E{uvvx)J^X + V^du,dvx 

+ J J E(u2,v2)e du2dv2 + ...+ J J E(uN,vN)e duNdv (24) 

"2 "2 VN"N 

Equation (24) is a candidate method for fusing multisensor data, and it is used here as a baseline in 
comparing other candidate imaging techniques. Before data from multiple sensors can be used in 
Equation (24), the problem of sensor mutual coherence must be addressed; this problem is considered in 
the following section. 
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3.   MUTUAL COHERENCE OF MULTISENSOR DATA 

3.1     GENERAL FORMULATION VS. RANGE/ANGLE BIAS 

Mutual-coherence problems occur when data are collected independently by spatially separated 
sparse-band sensors. It is convenient to partition this separation into two categories: range separation and 
angle separation. Range-only coherence errors result when two or more sensors interrogate a target at the 
same look angle but there is an error &R between range estimates for each sensor. For this case the target is 
in the far field of two nearly collocated sensors and the far-field criterion 2D /X is met, where D is the 
separation distance between sensors projected perpendicular to the RLOS to the target. Angle-coherence 
errors arise when this far-field criterion is not met, so that the target is in the near field (when interpreting 
the sensors as having a separation aperture of distance D) and there is an error in angle Acp in each sensor's 
look angle to the target. 

To examine the effects of range- and angle-coherence errors, consider the two-sensor geometry 
illustrated in Figure 10. Two sensors are assumed to operate independently, interrogate the target at angles 
cp, and cp2, respectively, and have bandwidths B W^ centered at /, and B W2 centered at /2 . The target is 
assumed to be in motion, which is determined by two basic components: a ballistic motion K0, generally 
characterized by the motion of the center of gravity of the target, and a localized motion Vn about the center 
of rotation of the body. This latter motion leads to short time interval range-Doppler images of the target 
caused by the motion Vn, which is the focus of this report. This phenomenology is to be contrasted with 
longer-time inverse synthetic aperture radar (ISAR) imaging, where changes in look angle to the target are 
obtained from changes in V0. 

The baseband received waveforms, before pulse compression, are given by 

/CO + C0A 

£,(03,9,) = |r,(co)| F,(<a + ffl,,<p,)e x ac(co + a>1,q>1)e    e 

CO + C0, 

BW. BW, 
<f< -—I     ,      (25) 

CO + co2 

2    ~J        2 

E2(a>\^2) = l^^'^l •^(w'+ co2,cp2)e x ac(co' + (o2,(p2)e     e 

BW0 BWn 

~~T-f~~T   ' (26) 

where R} and R2 denote the ranges to the target for sensors 1 and 2, respectively, ^(co) and r2(co') are 
the baseband transmitted waveforms, where 

BW, BW, 
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and 

Figure 10.  Geometry for two-sensor mutual-coherence characterization. 

BW^ 
<f< 

BW-, 
(28) 

and © = 2TI/, CO' = 27i/. F,(co) and F2((o') denote the antenna frequency-response functions, and 
oc(co,(p) represents the target's complex radar cross section (introduced in Section 1), which is a function of 
both angle and frequency. Allowance is made for phase and delay offsets (H/,,T,) and (vy2,T2) for each 
sensor, which result from hardware differences between sensors. 

Because the objective is to fuse multisensor signature data over a given time interval, a number of 
pulses will be processed. For a conventional wideband radar, R and 9 are essentially constant over a single 
processing pulse of length T; thus, changes in R,, R2, cpj, and cp2 are considered only over pulse 
increments on At, where At denotes the pulse repetition interval. Thus 



Rl(n) = Rl0+VlnAt 

R2(n) = R20 + V2nAt 

(Pl,« = (f)10 + /2A(Pl 
(?2,n = (?20 + nA(^2 

>n = 0, 1, (29) 

For each sensor the response function |7"(co)| t (w + co, 2) is generally known and is equalized by 
calibration, so this term is omitted from each response, ^(co) and £2(G)') can then be expressed in the 
form 

£•,(©,«) = a^co + copcp, n)x 

£2(co',«) = cc(co' + co2,(p2> n) x 

.2(0, 2co, 
y*, -y<»T, -•'—*i("> -•/—*i(«) 

2(1)' 2C°T 

e     e      ~e e (30) 

where /?,(n), /?2(/i) ,(p, „, and cp2 H are given by Equation (29). 

Equation (30) forms the basis for linking the data collected by each sensor. Equation (30) is divided 
into two parts: to the left of the multiplication symbol is indicated the ideal response associated with £j(co,n) 
and £2((o',/i); i.e., the complex radar cross section of the target. The cross section ac is unique to the target 
only and is analogous to what would be measured on an error-free radar cross section range. The quantities 
within the brackets to the right of the multiplication symbol denote corrections required in the data that 
would corrupt coherent multisensor data fusion: these errors must be removed from the data before sensor 
fusion can take place. In practice, the required phase correction represents the most formidable problem. 
Each of these factors is now addressed separately. 

3.1.1     Phase-Shift Offset and Hardware Time Delay 

7fi 
The phase-shift offset e is similar to that considered in [ 1 ]; it represents a combination of hardware 

and range-propagation phase errors. Generally the procedure is to reference one sensor to another, repre- 
senting a phase shift e 2 ' that must be removed from the data. The hardware time delay is similar in 
form to the range-delay factor and will be considered in Section 3.1.3. 

3.1.2     Range-Rate Compensation and Pulse Alignment 

The pulse-to-pulse change of the range line-of-sight from each sensor to the target is characterized by 
the last factor on the right-hand side of Equation (30). Typically these terms are removed from the data by 
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the process of pulse alignment, in which differences in range caused by AR(n) = VnAt are corrected. A 
smoothed state vector R(t) characterizing the range to the target's center of gravity is developed by the 
range tracker over many pulses of processed data. Each pulse is then aligned to R(t), with data 
compensation given by 

4nK   . +J-rnAt 

where AR • VnAt and X = Xx or X = X2, as appropriate for each sensor. Compensation for the phase 
offset induced by this term can be combined into the phase term discussed in Section 3.1.1. 

3.1.3     Frequency-Dependent Range Effects 

The middle factor on the right-hand side of Equation (30) causes a frequency-dependent distortion. 
The effect of this term for a given pulse is to offset the position of the wideband received pulse, resulting in 
an error in range estimate to the target. Typically this term is removed by appropriately setting the receive 
sampling gates according to the position determined by the range-tracker estimate R{t). Error biases Rx B 

and R2 B for each respective sensor relative to R(t) cause a shift in the position of the processed wideband 
pulse. For a single sensor this shift in absolute position is generally unimportant for wideband radar 
imaging; however, it must be compensated for when processing data from multiple sensors. 

3.2     MUTUAL-COHERENCE COMPENSATION 

The above development forms the basis for determining the compensation that must be applied to 
multisensor data in order to fuse multisensor signature data over different look angles and frequency bands. 
The net effect of the various compensation mechanisms required can be partitioned into the error sources 
delineated in Table 1. 

TABLE 1 
Error Sources and Mutual-Coherence Effects 

Error Source Mutual-Coherence Effect 

Hardware/Propagation Phase Offets «" 

Hardware Delays e 

Range-Bias Estimation Errors 
-ja(AR/c) 

Angle-Bias Estimation Errors 

•    Angle Bias cp ->• cp + A(p5 

•    Motion   -»   Angle cp -» cp + Acp(/) 
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The effect of these errors is to cause an error in the estimation of the complex radar cross section 
ac(f,q>) of the target. This effect can be succinctly summarized for two sensors by referencing the error 
sources to the first sensor. Denote by £,(£<p) and E2(f,y) the estimates of oc over sectors Q• and Q2 (the 
sector observation angles of sensors 1 and 2 relative to cp, and cp2) and bandwidths BWX and BW2, 
respectively: 

E](f,q>)*vc(f\
+f,V\+<?)     , 

|cp|<Q, 

E2{f,^>) ~ ac(f2 
+f> <?2 + A(Ps + 9)*,V« J(* 

\A<BW2 

|cp| < Q2 

I x = Ax + 2A.R/c 

(31) 

where the system (hardware) delay and range-bias delay errors are combined into the common term 

T = X2-IX+2{R1B-RX B)/c (32) 

The notation of a common baseband frequency variable / versus co and co' is the same here as was used 
previously. 

Examination of Equation (31) reveals that coherent processing of multisensor data requires 
compensation for range delay, aspect-angle estimation errors, and constant-phase effects. Two special cases 
that deserve special consideration are discussed in the following subsections. • 

3.2.1 Common Look Angle, Different Frequency Bands 

For common look angle and different frequency bands, the phase offset ip and delay error x must be 
compensated for in the data from band 2 according to fJVfe jaz before data fusion. Techniques for 
estimating T and compensating the data in band 2 are developed in [1]. 

3.2.2 Different Look Angles, Narrow Bandwidth 

For narrow bandwidths the frequency-dependent delay error e~jax reduces to a phase-offset error, and 
the angle-bias error dominates. As discussed in Section 2.1, it is assumed in this report that an accurate 
motion solution is available; thus, errors in A<p(0 caused by an inaccurate motion solution are outside the 
scope of the report. 

To compensate for angle-bias errors between sensors, cross-section data ac((p2 + <p + Acps) must be 
shifted in angle by Atpfl before coherent combination with ac(cpj + cp). A technique is now developed for 
estimating and compensating for Acp5; the technique is analogous to the pole-rotation compensation 
technique developed in [1] for delay compensation. In effect, differences in delay error (T2-T,) cause a 
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range misalignment that manifests itself as a pole offset. The difference Acpg causes a cross-range 
misalignment and results in a similar pole-offset effect. 

Consider a simple two-point scatterer model example, as illustrated in Figure 11. The angular variation of 
£(cp) at center frequency / « /,   is given by 

j acos(p 

£(cp) = D]+D2e   ° . (33) 

The poles associated with this simple two-point scatterer model over the region <p, + C2j can be determined 
using the expansion 9 = (pj +«A(p, where A9 denotes a small angular increment and n = 0,\, ...,N. 
Using the angle-sum formula for cos((p, + nAcp) and assuming «Acp « 1, £(9, + «Acp) can be written in the 
form 

471/, 47t/", 
j acoscp,  -j asin(p,(nA<p) 

En = Dx+D2e   c e     c . (34) 

Rewriting the sequence {£„} in the form 

4nr,       r  .4*/i y acostp, 

En = D]+D2e   c 

'1 -7——aAcpsintp, 
e (35) 

identifies two complex poles corresponding to each of the two scatterers. These are located on the unit 
circle and are displaced in angle by 

47t/-,                             471/, 
a, = aAcpsincp, = PCR^W     > @6) 

where the cross range is defined as pCR = asincp,. Thus a cross-range image at the angle (p, would appear 
as in Figure 12, as compared with a cross-range image at corresponding angle (p2. The associated pole plot 
is illustrated in Figure 13. 

A second sensor located at <p = q>2 would measure two poles displaced in angle by Equation (36), 
with <p, replaced by q>2. Consider now the positioning of the poles for two cases: for 9 = <p2 

an^ f°r a 

bias error cp = cp2 + A<ps. Assume (p2 xp,, for which sinq>2 > sincp,. For cp = (p2, the cross range is given 
by asincp2, and the cross-range image is as indicated in Figure 12 for (p = (p2. The cross-range image lines 
for q> = cp, and cp = (p2 intersect at the scatterer location, so the two cross-range images can be combined 
coherently to infer the true scatterer locations to within an ambiguity of two other intersecting points. The 
corresponding pole locations for 9 = cp2 

are shown on the unit circle of Figure 13; however, if the 
estimate of 92 is incorrect, i.e., if it is assumed 
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Figure 11.  Two-point scatterer model example. 

q>2 = 92 + A(Ps (37) 

the cross-range image for cp2 = q>2 + AcPfi would appear as the dashed image in Figure 12. The resulting 
intersection of the two cross-range images leads to an error in estimating the position of the scatterers, and 
the location of the pole P2(<p = cp2) has been displaced to P2(y = cp2 + Aq>fl). 
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Figure 12. Cross-range image. 

The process of determining Aq>B from the pole plot is straightforward. The spectral estimate for the 
cross range at either angle produces the correct result; the association of pc/^ with the incorrect estimate 
<p2 is in error. Thus 

sincp2      PCR2 

sin 9, Pa?, 
(38) 

so that 

(p2 
= sin     sin<pj 

PCR2 

Pol 
(39) 

and the bias error AcpB is given by 
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Pi(<P-0) 

P2(9 = <Pi) 

2 (<P = ft) 

Figure 13. Cross-range poles for two-point scatterer. 

A(p5 = (f>2 ~~ sm 
-1 

sin(p, 
PCR, 

PCRJ 
(40) 

Using Aq>fl to correct the image alignment in Figure 12 will produce the correct source location. 

Equation (40) can be interpreted as a pole-rotation correction. The pole that occurs at P2(cp = ^2) is 
the correct pole position; i.e., the cross-range separation predicted by the pole positions is indeed true. The 
right-hand term in Equation (40) rotates pole P2(cp = 92) mto ''i > determines the proper angle <p2, and 
corrects the angle estimate cp2 • 

3.3     RANGE BIAS AND ANGLE BIAS MUTUAL-COHERENCE DUALITY 

The coherence duality between the range-bias problem and the angle-bias problem is striking. This 
duality is summarized in Figure 14, which illustrates the coherence compensation duality between sparse-band 
frequency processing and sparse-sector angle processing. 

Range-bias errors lead to an offset of the wideband pulse processed by each sensor. If these pulses are 
combined without compensating for the range-bias error, the relative position of the scatterers indicated by 
the wideband compressed pulse do not match, resulting in misidentification of the number of scattering 

25 



centers. The locations of these scatterers for each subband are characterized by (1) a pole plot for each 
subband spectral estimate, and (2) the pole-rotation angle, which causes the subband pole estimates to 
coalesce into one estimate that characterizes the delay and range-bias errors. Analogously, for narrowband 
sensors with different look angles to the target, processing each subsector leads to a cross-range profile of 
the target. If these cross-range profiles are lined up without angle-bias compensation, common scattering 
points do not coincide, and once again misidentification of scattering centers occurs. 

Generalization of this discussion to two wideband sensors located at different angular positions is 
simple. Each sensor is able to form an image of the target, with image quality dependent on subbandwidth 
(range resolution) and angular sector size (cross-range resolution). Proper multisensor fusion allows 
coherent combination of these images for improved image quality. Range- and system-delay mismatches 
between sensors result in a range misalignment for each image, angle-bias errors result in a cross-range 
misalignment, and phase errors result in less coherent processing gain in combining corresponding image 
points. Coherent signature fusion can be accomplished only when the sensors are mutually cohered to 
eliminate these misalignments and phase errors. 

Range Bias —Two Bands 

Band 1        Band 2 

/        \ 
Spectral estimation to sharpen 

range (sub-band) resolution 

Range Poles 

Coherence 
Pole Rotation 

Pulse Compression 

• 

J W M Ik 
Range 

Angle Bias —Two Sectors 

Sector 1      Sector 2 

/        \ 
Spectral estimation to sharpen 

cross-range resolution 

Cross-Range Poles 

Coherence 
Pole Rotation 

I 
Data Fusion 

vs Angle 

Angle 

Figure 14.  Coherence duality: range bias vs. angle bias. 
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4.   SENSOR DATA FUSION EXAMPLES 

This section provides examples that demonstrate the utility of using an image processor for sensor 
fusion. Considered are progressively more difficult (but also more realistic) target-scatter models, beginning 
with a constant-amplitude point-scatter model, progressing to three-dimensional physical targets, and 
ending with enhanced-fusion algorithms applied to static-range data. The targets considered are not 
comprehensive, but they are illustrative of the concepts and techniques that have been developed. 

One goal of combining multisensor data is to achieve enhanced resolution and more comprehensive 
target characterization. The next subsection demonstrates that if the target model consists of M ideal 
constant-amplitude point scatterers, an efficient data-fusion algorithm that provides superresolution 
comparable to that achieved in [1] can be developed for two or more wideband sensors. This section begins 
by presenting this example, considers the case of narrowband sensors, and then extends the concept to more- 
physical targets. 

4.1     CONSTANT-AMPLITUDE POINT-SCATTER MODEL (WIDEBAND FUSION) 

4.1.1     Images from Single-Sensor Data and Conventional Processing of Multisensor Data 

Consider a scenario in which two spatially separated sensors collect data on the target illustrated in 
Figure 15. To demonstrate that ultrawide-bandwidth wide-angle resolution is achievable by fusing 
multisensor data, the target chosen comprises five scatterers that are not totally resolvable by either sensor 
alone. It is most illustrative to depict the data-collection regions using the (u,v) space characterization 
introduced in Section 2. 

It is assumed that each sensor acquires data in a different sector of (/]cp) space, as indicated in 
Figure 16. Table 2 lists the parameters for each sensor, as well as parameters for a hypothetical sensor with 
a bandwidth that spans those of sensors 1 and 2, plus a full rotation of look angles. The point scatterers for 
sensors 1 and 2 are not resolvable with either sensor by itself. 

Figure 17 illustrates the image generated using wide-bandwidth/wide-angle data from a hypothetical 
sensor. The image in Figure 17 is the reference to which other images of this target are compared; it 
represents an optimal image that is achievable only by a hypothetical sensor. Processing methods used in 
this section and in Section 4.2 will be evaluated based upon how close their results match the reference 
image in Figure 17. 

Figure 18 shows the image obtained from sensor 1 data using the conventional image processor 
defined by Equation (6). The bandwidth and angular span of the data from sensor 1 limit range and 
cross-range resolution to approximately 0.15 and 0.06 m, respectively. Because the spacing between all 
point sources is less than the range-resolution limits and the spacing between three of the point sources is 
less than the cross-range resolution limits, none of the target's five scatterers is resolved, and poor image 
quality results. 
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Figure 15. Geometry of target (meters). 

Sensor 1 
Data 

Sensor 2 
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Figure 16. Scenario for collection of data from sensors I and 2. 
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TABLE 2 
Sensor Parameters 

Parameter Sensor 1 Sensor 2 
Hypothetical 

Wide-Bandwidth/ 
Wide-Angle Sensor 

Frequency Band 3 to 4 GHz 9.5 to 10.5 GHz 3 to 10.5 GHz 

Frequency Step Size 100 MHz 100 MHz 100 MHz 

Observation Angles 155 deg<(p, <200 deg 40 deg < q>2 < 85 deg 0 deg < q> < 359 deg 

Angular Step Size 1 deg 1 deg 1 deg 

Range Resolution 0.150 m 0.150 m 0.020 m 

Unambiguous Range 1.5m 1.5 m 1.5 m 

Cross-Range Resolution 0.055 m 0.019 m 0.014 m 

Unambiguous Cross Range 2.455 m 0.859 m 1.272 m 

-0.2-0.15-0.1-0.05  0    0.05 0.1  0.15 0.2 
X (meters) 

Figure 17.  Image generated using data over frequency band 3 GHz</<10.5 GHz   (Af =  100 MHz) and aspect 
angles 0 deg < cp < 359 deg (Aip = 1 deg/ 
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Figure 18. Frequency band 3 GHz </< 4 GHz , aspect angles 155 deg < cp < 200 deg 

Figure 19 shows the image obtained from sensor 2 data. X-band data from sensor 2 provide range and 
cross-range resolution of 0.15 and 0.02 m, respectively. Scatterers are resolved in the cross-range direction; 
however, image quality is still poor because of inadequate range resolution. 

Figure 20 shows the image obtained by directly combining data from sensors 1 and 2 using the image 
processor in Equation (24). Combining data from both sensors using the image integral in Equation (24) 
increases resolution (inasmuch as all five point sources are visible within Figure 20) but introduces many 
ambiguities because of gaps in the data. These ambiguities make it impossible to determine where the true 
scatterers are located. Figure 21 shows a magnification of Figure 20 and indicates the true location of the 
five point sources in the presence of the many ambiguities. 

To significantly improve image quality, it will be necessary to fill in missing frequency and angle data 
either by obtaining more measurements or by using signal-processing methods. Section 4.1.2 develops an 
algorithm that extends the ultrawide-bandwidth processing techniques developed in [1] as a means for 
extrapolating the database for high-resolution imaging. 
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Figure 19. Frequency band 9.5 GHz </< 10.5 GHz , aspect angles 40 deg < <p < 85 deg . 

-0.2-0.15-0.1-0.05   0    0.05   0.1   0.15   0.2 

X (meters) 

Figure 20. Image integral of Equation (24) is used to combine data from sensors I and 2. 
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Figure 21. Magnification of Figure 20, showing resolution of point sources (enclosed in white circles). 

4.1.2     Two-Dimensional Ultrawide-Bandwidth Processing 

Section 2.1 showed that the radar response for targets containing M constant-amplitude pointlike 
scattering centers can be interpreted in terms of a two-dimensional target function E(f,y>) written as 

M 

Etf,<?) =    X °c_me 

Anf, .    , -j—4(xmcos<p+j>msm<p) 

c, m (41) 

If E(f,ip) is sampled in (f.cp) space at the grid point (fn,<pn) , the samples of E are given by 

E<fnWn) =   L a     e (42) 

Equation (42) shows that the samples of E(f,ip) fall naturally into the two-dimensional polar-processing 
space illustrated in Figure 16. The radar interrogation frequency / corresponds to the "radius vector" in 
this space. The target viewing angle (p determines the azimuth angles of the target samples within the 
polar-processing space. In terms of Cartesian coordinates, the locations of the measurement samples are 
given by 
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4*/* 
Un  •  — COS(P„ 

v„ - — smcpn    . (43) 

Equation (43) can be viewed as a change of variables from the polar coordinate system (/, <p) to Cartesian 
coordinates (H,V) . With this change of variables Equation (42) becomes 

M 
Z-J\xu, + y„v„) 

ocy   "" . (44) 

m= 1 

Observe from Equation (44) that radar return signals from ideal constant-amplitude pointlike objects can 
be viewed as a superposition of two-dimensional sinusoids (waves) in («,v) processing space. Processing 
data in (u,v) space significantly simplifies subsequent signal processing, as it allows the unknown 
parameters in E(un,vn) to be estimated accurately using the all-pole modeling techniques developed in [1]. 
To accomplish this, the data must be resampled corresponding to equispaced increments (AM,AV), as 
discussed in Section 2. In Equation (44) the parameters (xm,ym) correspond to the locations of target points 
in the target fixed coordinate system (Figure 4), and ("„,vn) correspond to sample vectors in the 
polar-processing space. The primary signal-processing goal is to estimate the unknown target parameters 
that characterize E (i.e., M, xm, ym) by coherently processing all available radar measurements. 

Assuming that N radar measurements are taken over a uniformly spaced set of frequencies and view- 
ing angles, the components of the sample vector (un,vn) may be written in terms of corresponding sample 
indices: 

un = M0 + 5«"l ' n\ = " e {°> •••>Ar-l}    - 

vn = vQ + 5vn2,n2 = ne{Q,...,N-l}    . (45) 

The sampled function E in Equation (44) can then be written as 

M M 

E{nvn2) =   2- cm°me =   ^ ampmqm    , (46) 
m = 1 m = 1 

where am denotes the complex-valued amplitude coefficients corresponding to the pole pairs (pm,qm) • 
Thus E(n],n2) is equivalent to an all-pole signal model with poles having a magnitude of unity and angles 
that depend on the location of the point scatterers in the two-dimensional target fixed coordinate system. 

Considering the discussion on polar formatting of data in Section 2.1, it is clear that Equation (44), 
sampled in uniform increments of (un,vn), represents £(/",(p) in a polar format. Thus, while polar formatting 
of data has traditionally been used for imaging applications because it produces focused images using the 
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fast Fourier transform, it has now been shown that radar returns in a polar format can be interpreted as an 
all-pole model whose M poles correspond to M pointlike scatterers. This allows the extension of the 
one-dimensional pole formulations of the ultrawide-bandwidth problem to the two-dimensional 
frequency-angle case, which is accomplished used the following procedure: 

1. Received radar data in (/jcp) space must be resampled onto a rectangular grid in (u,v) 
space, as shown in Figure 22. 

2. Resampled data along horizontal lines are loaded into a block Hankel matrix Hw, 
representing signal variations in u space (Figure 22). 

3. Resampled data along vertical lines are loaded into a block Hankel matrix Hv, represent- 
ing signal variations in v space (Figure 22). 

4. Each Hankel matrix (HB,HV) is processed as described in Section 5 to determine the u - 
and v-direction poles, respectively. The pole locations are then optimized using a 
nonlinear least-squares method. The resulting two-dimensional all-pole model is given by 

s(u,v) =   X    X atjPi4j    > 
7=1    / =  1 

(47) 

which can be equivalently written in matrix form as 

S = PAQ (48) 
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Figure 22. Pole estimation using two-dimensional root-MUSIC processing. 
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Estimate A in Equation (48) using a linear least-squares method. Thresholding applied to 
the elements of A allows the double-sum signal model of Equation (47) to be replaced by 
an approximate single-sum signal model written as 

M 

s(u,v) =    X ainpU
mq 

m= I 

(49) 

Figure 23 shows the image generated from sensor 1 and 2 data after two-dimensional 
ultrawide-bandwidth processing. A comparison of Figure 23 with the reference image of Figure 17 and the 
combined-data image of Figure 20 shows that two-dimensional ultrawide-bandwidth processing offers a 
significant improvement in image resolution over conventional processing of multisensor data. 

The method described breaks down when there are not enough samples from a sensor to perform 
bilinear interpolation for polar formatting; for example, when one or both sensors are very narrowband. 
Section 4.2 introduces an alternative method for filling in missing data for narrowband sensors. The method 
to be described extends the data using an iterative approach. 

-0.2-0.15-0.1-0.05   0   0.05 0.1  0.15  0.2 

X (meters) 

Figure 23. Image from combined sensor data after two-dimensional ultrawide-bandwidth processing. 

4.2     CONSTANT-AMPLITUDE POINT-SCATTER MODEL (NARROWBAND FUSION) 

For narrowband sensors the width of the frequency band over which data are obtained becomes very 
small, so there may not be enough samples to develop a Hankel matrix of sufficient rank to provide a good 
pole estimation. In this case it is useful to develop alternative methods for processing narrowband data. This 
section develops an iterative algorithm for enhancing the performance of the conventional image processor 
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defined by Equation (6) for very narrowband wide-angle data. This iterative technique will be extended to 
physical targets in the next section. 

It is assumed that data are available over perhaps a sparse subset of the interval 0 < cp < 2n and a 
narrow band of frequencies. Carrying out the image integral in Equation (6) over the known data sectors 
will provide a degraded image of the target model; however, generally the peaks of this image are 
ambiguous and/or close to the correct source locations. The method developed here uses these ambiguous 
sources to estimate (extend) £(/",cp) outside the data regions. Then the integration in Equation (6) can be 
carried out over a much larger angular sector, providing better resolution of the actual sources that are 
present. The process can be carried out iteratively, with the anticipation that it will converge on the true 
source locations if the number of point sources is not too large. 

The methodology consists of the following steps: 

1. Construct an image from £(Acp) using the image integral of Equation (6) over regions of 
known data and estimate scatterer locations {xm,ym). 

2. Revise £(/",<p) using estimated scatterer locations (xmS>m) as follows: 

&m - 
£(/",cp), over cp 

_,        y-2(imcos<p y-2iymsinq> • (50) 
AJA  e e , outside cp, m 
m 

3. Determine the values of Am in Equation (50) by a least-squares fit to E(f,(f>\) over q>,. 

4. Construct a new image over the larger sector using updated field estimates from 
Equation (50) and revise estimates of scatterer locations (xm,ym). 

5. Iterate on steps 1 through 4 to refine estimates of scatterer locations (xmS>m). 

The example shown to demonstrate this methodology uses known target-signature data measured at 
three frequencies, 3.95 GHz<f<4 GHz, A/ = 25MHz, and over an angular sector 
cp j = -45 deg < 9 < 45 deg. The 1.2-m target comprises five point scatterers, as shown in Figure 24. This 
geometry is similar to that considered in the previous section, scaled by a factor often. The extended region 
is treated as 0 < cp < 27t. 

Figure 25 shows an image constructed using the known data £(/",cp) . The five scatterers and the 
general shape of the target are resolved within the image, but there are numerous ambiguities present that 
make it difficult to determine accurately where the true scatterers lie. 
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Figure 24. Five-point scatterer with overall length of 1.2 m. 
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Figure  25.     Image constructed from  known  data  calculated at   3.95 GHz </< 4 GHz    and aspect angles 

-45 deg < <p < 45 deg. 
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The next step is to estimate scatterers (xm,ym) by performing a search over the image of Figure 25 for 
the M largest peaks. The example uses M = 6. £(/",q>) is then revised as described in steps 2 and 3. 
Figure 26 shows the Am values found in step 3. 

Figure 27 shows the image generated from revised £(/,cp) , showing a significant reduction in 
ambiguities. A second iteration is performed using Figure 27 to search for the M largest peaks, where now 
M ~ 5. Figure 28 shows the Am values found in the second iteration of step 3. Figure 29 shows the image 
generated from revised £(£cp) after the second iteration. Two iterations have achieved a significant 
improvement in the image; more iterations will offer no further enhancement. 

The practicability of this technique depends on having enough data so that the estimates (xmS'm) 
contain the positions of the actual scatterers and on the validity of the constant-amplitude point-scatter 
model over the entire region. Using this technique and those discussed in Section 4.1, a methodology can 
be developed for fusing sparse-angle, sparse-band data for narrow- and wideband sensors for the 
constant-amplitude point-scatter model. More physical-type targets are now considering using this 
framework. 

Figure 26.  Am values found from Equation (SO) in step 3. 
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Figure 27. Improved image from extended data. 

Figure 28.  A    values found from Equation (50) in second iteration of step 3. 
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Figure 29   Improved image from extended data after second iteration. 

4.3     EXTENSION TO PHYSICAL TARGETS 

4.3.1     Narrowband Fusion Over Multiple Angular Sectors 

The previous sections illustrate that for an ideal constant-amplitude point-scatter target it is possible 
to achieve robust sensor fusion over broad angular sectors for wide- and narrowband sensors using 
two-dimensional (u,v) space-processing techniques. The techniques shown allow for data interpolation 
between both sparse-angle sectors and frequency bands and extrapolation to an extended region of (u,v) 
space. The method's practicability lies in the constant-amplitude point-scatter approximation and its validity 
over wide angles and wide frequency bands. Unfortunately, real targets are much more complicated, and the 
constant-amplitude point-scatter model applies only over limited angular segments. The difficulty 
encountered when attempting to extend bandwidth-extrapolation techniques to the angular domain for real 
targets has been discussed by Moore et al. [3]. They point out that angular (aperture) extrapolation departs 
from bandwidth extrapolation in two ways: the nonlinear phase dependence due to range dependence on 
angle, and the large number (nonphysical) of constant-amplitude scattering centers required to characterize 
a specular response. They further point out that over limited regions, away from specular responses, one can 
achieve perhaps a factor-of-two to a factor-of-four increase in cross-range resolution. Thus the 
constant-amplitude point-scatter approximation is most severe when attempting to connect or interpolate 
data between widely spaced angular segments. 

40 



In general, for a given look angle to the target, the point-scatter model has broad applications; thus, 
the techniques developed in [1] are robust in allowing data fusion between frequency bands for sensors with 
a common look angle to the target. In fact, [1] demonstrates the validity of the all-pole frequency model over 
a wide range of targets of interest over limited angular sectors. The problem arises when extending these 
results to interpolating data between widely spaced angular sectors. Although the constant-amplitude 
point-scatter model is locally valid, the amplitude of the point-scatter model changes considerably between 
sectors, and the direct application of the techniques developed above to realistic targets breaks down, 
primarily because of three main effects: 

1. Specular responses, 

2. Diffraction from discontinuities, 

3. Shadowing. 

Specular Responses. Speculars occurring in the angular domain are analogous to the resonance effect 
in the frequency domain. An all-pole model with constant-amplitude coefficients is generally poor in 
modeling resonance phenomena, primarily because of the large dynamic range of the response. Thus 
constant-amplitude point-source models provide poor characterization of speculars. 

Diffraction from Discontinuities. It is well known from the geometrical theory of diffraction [4] that 
the field scattered from a discontinuity on a scattering body is well modeled at high frequencies by a 
localized point source whose complex amplitude changes with frequency and angle. Thus for a given 
discontinuity located at the coordinate (xm,ym), the field scattered at a given polarization is characterized by 

-Jux„ -ivy. 
Dmme      me (51) 

where u and v are as defined in Equation (13). For a given q>0, the variation of Dm{f,<$Q) is typically well 
modeled by the /* dependence considered in [1], where the exponent a is dependent on scatterer type. 
This forms the rigorous basis for the general validity of the all-pole frequency model; however, for some 
resonant scatterers (for example, a resonant antenna on a conducting body) the variation of Dm(f,q>0) 
versus frequency is not characterized well by /* , but by a tuned resonant circuit response. In this case one 
would resort to a different basis expansion for Dm(f,y0); fortunately, this resonance effect is atypical of the 
most common scattering feature types. 

Unfortunately, for fixed-frequency fQ , the typical variation of Dm(fQ,<p) versus cp is more analogous 
to the frequency-resonant scatterer case than the /"-dependence case. To see this, consider the analytic 
expression characterizing Dm(f,<$) for the two-dimensional wedge, denoted by D(f,q>), which is illustrated 
in Figure 30: 

^0 D,+ 
COS COS 

2cp' 
(52) 

where D0 and D, are constants, n = (2 - qw)/ii, <plv is the wedge angle, and transverse electric incidence 

to the wedge is assumed. For 9 = (p0,  D(/i<p0) ~f   , which is well modeled by an /*  variation using 
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a = -0. ; however, for fixed f0  the variation of Z)(/"0,cp)  versus cp is more complex. Observe that a 

specular response from the wedge geometry illustrated in Figure 30 occurs at two angles: 

<Pl 
71 

2   ' 

3 71 71 
^2   =   T-V*,  -   ""-9 (53) 

^2=^-wa 

-n) Jt = wa = wedge angle, 0=s/rs2 

Figure 30. Geometry for wedge diffraction. 

Using Equation (53), it is possible to rewrite Equation (52) in the form 

D(f,<?) = 
D, 

Jf 
D,+ 

1/2 

sinl-((p-(p1))sm(-((p-(p2) 

(54) 

which clearly illustrates the singularity in D(f,y) at ip = (p,, cp2. Hence the analogy becomes clear that the 
variation of D(f0,y) versus cp is more akin to a tuned-circuit resonance when compared with the frequency 
domain. 

Observe that in regions about both sides of a given specular, Z)(/"0,cp) is well modeled by a general 
expansion of the form 
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D(/Q,9) - C, + 
C2 

sin((p-(pj 
(55) 

where cp^ is the specular angle and Cx and C2 are constants that optimize the fit. Figure 31 illustrates the 
variation of £>(/"0,(p) for a 90-deg wedge and the approximation from Equation (55) that is used in later 
sections as a data-fusion basis function. 

The functional form for £>m(/"0,<p) given by Equation (55) is generally valid for localized scattering 
centers that inherently contribute to a specular response. This specular type of scattering is important 
because, once identified, it provides general information about the nature of the surfaces that are adjacent 
to the scatterer; e.g., flat or wedgelike types of interfaces. Other types of scattering centers are characterized 
by a functional form for D(f,q>) that is generally different than Equation (54): one example would be a ridge 
or channel set on a curved conducting surface; in that case, the functional form for Dm(f,q) versus the angle 
would characterize the scattering pattern of the ridge or channel at the appropriate frequency. Thus a general 
parameter-based choice for the basis-expansion set must be robust enough to cover a variety of diffraction 
phenomena. Figure 32 illustrates various types of diffraction for a variety of example cases. 

<i*r* sin(<p-90°) 

Hf,9) 

20     40     60     80    100   120   140   160 

Angle (deg) 

Figure 31. Diffraction from 90-deg wedge. 
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Figure 32. Example diffraction-basis functions. 

An approximation that might be used to characterize the angular variation of D(f0,<p) for a 
fixed-frequency /0 is also illustrated for each example. Although these examples are limited in scope, they 
provide a class of examples characterized by a more general form for D(f0,q>), given by 

sin    ((p-<p0) 
(56) 

sin    (<P-<P52) 

where /fc0 and &2 are constants that depend on the specific scatterer dimensions. 

Shadowing. One basic premise of the geometrical theory of diffraction is that radiation or scattering 
to a particular point in space occurs primarily from scattering sources visible to the far-field observation 
point; thus, when fusing signature data from two different look angles, care must be taken to isolate 
scatterers visible to both sensors. The typical approach to this problem, used in extended coherent 
processing of single-sensor radar data over wide angles, is to limit coherent processing to 90-deg sectors, 
assuring the existence of at least some number of common scattering centers. Shadowing is of particular 
concern in mutual coherence compensation for widely spaced sensors, which will be addressed further in 
Section 4.3.3. 
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4.3.2     A Simple Example: Two-Dimensional Strip (Narrowband) 

Perhaps   the   simplest   deviation   from   the   constant-amplitude   two-point   scatterer   is   the 
two-dimensional strip illustrated in Figure 33. 

\<P 
•> X 

Figure 33. Geometry of a two-dimensional strip. 

Relative to the three physical effects considered in the previous section, the strip exhibits specular and 
diffraction effects but no shadowing. For simplicity, the strip of width 2a is oriented on the x-axis of the 
x-y coordinate system so that backscatter from the strip is given by £(/",cp) , where 9 is the standard 
azimuthal angle variable. Observe that for any look angle away from specular, the strip appears as a 
two-point scatterer; however, a constant-amplitude two-point scatter model will fit the data over only a 
limited angular sector. Using the geometrical theory of diffraction and the strip diffraction coefficient 
given by Equation (54), with n = 2 , the backscattered field £(/",cp) can be written in the form 

E(f,y) = D, (f,y)e+Jua + D2(f,y)e~JUa     , 

where, as before, u = -^ cos9, and Dx(f,q) and D2(f,q>) are given by 

(57) 

Dxm) = -T["I+—1 . 1 Jfl      coscpj 

D2m -&    1 

Jfl        COS(pJ 
(58) 
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Observe that for any given angle cp = cp0, the field amplitude varies as f . The "real part" of the 
variation of £(/",(p) for ip0 = 45 deg is shown in Figure 34 and is characteristic of the /* frequency 
behavior; however, for fixed-frequency f = f0 , the angular variation of £(/",(p) is considerably different 
in nature, characteristic of a resonance as the field passes through the specular region, as illustrated in 
Figure 35. This duality is made clear by comparing Figure 34 with Figure 35, for which f0 has been 
chosen such that 2a/n = 10 . In the former case, for fixed cp0, the field variation is clearly modeled by a 
two-pole point-scatter model over the entire frequency band. The inability of a constant-amplitude all-pole 
model to model the angular field variation over broad angular regions is also evident from Figure 35. 

Sector Processing: Narrowband Data. Consider now the case where data are available over two 
angular sectors that may be sparsely separated. The special case is considered where the field scattered in 
the observed sector regions is characterized by the same specular response. It has been shown qualitatively 
that an all-pole angle model is capable of characterizing the field variation over a limited angular sector; to 
quantify this effect, consider the field variation from each scattering center given by Equation (51) and 
approximate the variation of Dm(fQ,<f>) according to 

D
mVo^*Doe~am*   • (59) 

Then the field variation that results from this localized scattering center is given by 

4*/0 AnfQ 
-a <p -J—--^costp -j—-yMsinq> 

Em<fo,V)<*DQe   m e e (60) 

Assuming ip = q>0 + wAcp and for «Acp « 1, Equation (60) takes the form of an all-pole model in Acp: 

.47t/o 4n/n 

£mOo'(Po + "A(f))K-DOe e e W ' (61) 

where the pole pm is given by 

4«/0 . 4JI/0 
+j—xm&<psm<pQ -j-—ymAVcos(f0 _a A 

Pm = e e e . (62) 
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Figure 34. Scattered field from two-dimensional strip as a function of frequency. 
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Figure 35. Scattered field from two-dimensional strip as a function of aspect angle. 
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Rewriting the pole pm in terms of the cross-range resolution gives 

PCR   = P««n(9„-90)   > (63) 
fit 

where   xm = pmcoscpm and ym = pmsin<pm , which gives 

J—^PCRm -amAcp 
/>M = e e (64) 

Thus the scatterers can be isolated in cross range using local all-pole spectral-estimation techniques, and 
the field variation can be characterized using a local all-pole model approximation. However, when 
compared with the exponential approximation /* for the all-pole frequency model, the variation of am 

will be considerably larger, and the poles will be displaced a considerable distance off the unit circle. 

The limitation on all-pole modeling over a broad angular sector is quantified by a simple example. 
Consider two sectors, q>0 = 40 deg and cp0 = 80 deg, each with a sector size of 12 deg. The poles associated 
within each sector are each estimated separately by using the technique described in [1]. The localized 
all-pole model fit to each data set, assuming two poles per sector, is illustrated in Figure 36. The all-pole 
model fit is clearly quite good over each sector; note in particular the exponential growth associated with 
the field in sector 2. Given for comparison is the all-pole approximation to the field over the entire region 
containing the two sectors (34 to 86 deg). The fit using a simple all-pole model to cover the entire region is 
poor overall and favors the sector where the field is strongest. The next section considers the fusion problem 
in joining the two sectors. 

A Specular-Based Diffraction Basis-Expansion Set. The previous section demonstrates that a single 
all-pole model is not capable of representing the field variation for the two-dimensional strip over a broad 
angular sector. This is to be expected, particularly given the development in Section 4.2, where it was shown 
that a large number of poles are required to characterize an M -point scatter model over a broad angular 
sector and that the number approaches (47t|Hmax)/^ as the angular sector approaches 2%. It was for 
precisely that reason that the transformation was made to (u,v) processing space, where a 
constant-amplitude scatterer is characterized by a single pole. Clearly, if a common model is to be found for 
interpolating data between angular sectors for realistic targets, a different basis set is needed. 

To develop a set of basis functions appropriate to the angle-interpolation problem, refer to 
Equation (55), where it was demonstrated that the constants C0, C,, C2, and a specular location ips are 
adequate to characterize the angular variation of Dm{f0,ip) over regions including the specular. Begin with 
the general expansion for E(f,q) determined by the geometrical theory of diffraction: 
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Figure 36. All-pole model for localized angular sectors. 

M 
-Juxm -Jvyn £(/» =   Z Dm(fQ,v)e~    V 

m = I 

Generalizing Equation (55) to the case of the m th scattering center gives 

(65) 

M 

em =14 c 
c,,,„ + 2, in 

sin((p-cps. m) 

-j"x„, -jvy„ 
e        e (66) 

at any given frequency f = f0 . Equation (66) is general enough to characterize the field variation over 
broad angular regions for either constant-amplitude or specular-dominant scattering. Consider, for 
example, the two-sector strip example given previously. Figure 37 illustrates the match to the data over the 

34- to 86-deg sector at /0 = 3 GHz  using the single all-pole angle model of Figure 36 vs. that obtained 
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using the diffraction-based basis set defined by Equation (66). The data match using the diffraction basis 
set essentially overlays the data over this broad angular region. 

There is clearly a drawback to using the expansion basis set defined by Equation (66): the location of 
the specular appears as a nonlinear parameter. There are two solutions to this dilemma: the first is to estimate 
ys by nonlinear iteration of the fit to the data set to obtain the best match; the second is to estimate q>s. from 
other information, such as for a tumbling target rotating through a large number of sectors, where the 
speculars occur directly in the data. The first approach is pursued here. As a starting point to this nonlinear 
iteration, it is possible to estimate cp^ from the all-pole model obtained for each sector. 

Consider the local approximation fitting the pole model to the diffraction basis set 

DQe 
-«,„<P C, '2, in 

sin(q>-q>.) 
(67) 
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Figure 37. All-pole model and diffraction-basis set. 
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Assuming the second term dominates the exponential growth of the all-pole model, it can be shown that an 
estimate of <p   is given by 

<^«q>0 + tan   '(—I    , 
a. 

(68) 

where cp0 denotes the center of the angular sector under consideration. The closer cp0 is to cp^ 
correct the estimate. This initial estimate is used for cp   in later sections on data fusion. 

the more 

In general, the diffraction coefficient Z)(/",cp) is a function of both frequency and angle. As discussed 
earlier, for fixed q> = cp0, £>(/",cp) is well modeled by an /* frequency-dependence. The exponential 
function e can be found that best matches this /* frequency-dependence over a wide frequency range 
[5], which provides the basis for the all-pole ultrawide-bandwidth model developed in detail in [1]. Using 
this exponential frequency-dependence, Equation (66) can be rewritten in the form 

A/ 

Etf,q>) =   Z e -M 
m = 1 

%m 
]'m    sin((p-(D     ) 

e        e (69) 

where pm denotes the assumed exponential frequency-dependence of the mth scatterer. As it stands, 
Equation (69) contains (3m as a nonlinear parameter that is in general difficult to estimate for the general 
case where both/ and cp are considered variable. For any given angle <p = cp0, the exponential term e 
may be interpreted as a complex pole in frequency space, and the parameter (3m is estimated directly from 
the spectral-estimation process. This approach can be used to process sparse multiband data over broad 
angular sectors as long as the angular variation of the measured data set is continuous (e.g., as for a 
spinning or tumbling target). In this case the poles associated with the expansion of Equation (66) are 
functions of angle and change with each processed pulse. 

For the more general case of fusing data over sparsely located angular sectors and sparse-band 
sensors, the basis set given by Equation (69) must be used, and Pm is not so easily determined. Noting that 
a linear approximation to e is generally valid over broad frequency ranges, as the frequency variation 
for other than resonant scatterers is weak, circumvents these difficulties. In this case e is approximated 
in the form 

D0e^J,D0-D0^J (70) 

Using Equation (70) in Equation (69) leads to the desired basis-expansion set: 

M 

Em = Z 
Co 

c,    + -1>m    sin(q>-<p. _) 

-juxm  -jvy„ 
[C3,m + CA,nif]eJ   me}ym (71) 

51 



Assuming cp^ m is estimated independently, for example using Equation (68), Equation (71) leads to 
a linear set of equations when E{f,<$) is sampled at / = fn , cp = cpA. An algorithm is now presented for 
estimating the parameters in Equation (71) from a measured data set. 

Image Processing and Data Fusion. Consider now the problem of estimating the parameters 
associated with the diffraction-based expansion given by Equation (71) when data are available over 
multiple angular sectors at different frequency bands. The approach is iterative, analogous to the approach 
to the constant-amplitude point-scatterer model in Section 4.2. This section considers only the 
multifrequency narrowband problem; it is directly extendable to the wideband case when broadband sector 
data are available. The approach is as follows: 

1. Determine the all-pole model over each sector (or each subsector, for wide-angle data): 

a. Determine the scatterer locations and complex amplitudes Am, obtained by a fit to the 
data over a given sector, 

b. Estimate the nearest specular cp = <p^, one for each sector. 

2. Form a sequence of images, one for each sector, as defined in Figure 12: 

a. Let {x y ) denote a pixel image point. 

b. Threshold the data according to 

2 2 
If U J   > TQ , set \A\   = TQ ; T0 is a threshold parameter. (72) 

c. Form the sector image for each scatterer pCR , determined for the sector cp0 according 
to 

VVP> 
= N2' 

PCRm 

P     T°    coscp0 

. 0, otherwise 

<£      > (73) 

where e is a small number, on the order of a pixel-cell size. 

3. Add the sequence of cross-range images 

/(vV =  I VvP • (74) 
Sectors 

4. Estimate the locations of the scatterers (xmym) from the peaks of the image J(x,y). 

5. Perform a least-squares fit to the data over the given sectors according to 
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£(/*,cp„)=    I 
m= 1 

1>m     sin((P»-<P5,m) 
^m + CAjk^

JUk-nXme~JVk-ym     •    (75) 

6.      Iterate the solution on the parameter {q>5 m}. 

7'.      Interpolate (fuse) the data over data gaps. 

The image-formation algorithm enumerated above is similar in concept to the back-projection or 
layergram technique using the Radon transform, which is discussed in detail in [5]; however, it is different 
in three critical ways: 

1. The subsector cross-range profile is obtained using a high-resolution spectral estimation 
technique and allows for complex poles; i.e., signal growth or decay over the sector. 

2. The poles as determined are weighted according to the data fit described in 1(a) above; 
thus, ambiguous poles are eliminated. 

3. Thresholding the data provides a much greater dynamic range for isolating closely spaced 
sources. 

Example 1: Sparse-Angle Single-Band Data. Consider the strip example treated previously, where 
data are collected by two sensors over each of the two sectors 34 to 46 deg and 74 to 86 deg. The sensors 
are assumed to operate over the same frequency bands. The results of the various steps of the process 
outlined above are illustrated in Figure 38. The upper-left plot of Figure 38(a) shows the variation of the 
field magnitude over the 0- to 90-deg interval. To form an unambiguous image of the two edge points of the 
strip, subdivide each sector into two additional sectors, treating the known data effectively as four sectors, 
each 6-deg wide. 

Sector 1 (34 to 40 deg) —> cp0 = 37 deg 

Sector 2 (40 to 46 deg) -• q>0 = 43 deg 

Sector 3 (74 to 80 deg) ->• cp0 = 77 deg 

Sector 4 (80 to 86 deg) -> cp0 = 83 deg 

The data fit using the all-pole model for each subsector is illustrated in Figure 38(b); the fit is essentially 
that of four separate sectors superimposed on the plot and is nearly identical to the original data. To 
estimate the specular location, use Equation (68), choosing the am that corresponds to the pole with the 
largest amplitude in the local fit to the data and for which the approximation leading to Equation (68) is 
most accurate. The results produce a value of ys = 90.1 deg. Table 3 illustrates the value of <J>5 obtained 
from each subsector and all values of a. The approximation improves as cp0 -»specular. A closer 
examination shows that those poles that are in considerable error in predicting a specular are not used in 
the data fit over that sector. 
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Figure 38(c) illustrates the initial image obtained using Equation (74), where the peaks at A- = ±1 and 
y = 0 are evident, as are the ambiguities that occur. This image is thresholded to a given number of 
maxima, and these potential source locations are used in a least-squares fit to the data, defined by 
Equation (75). The fused signature data obtained from this fit are illustrated in Figure 38(d). The agreement 
is very good, both in the interpolated region and in the extrapolated region outside the sectors. Closer 
examination shows that only the image points at x = ±1 contribute significantly to the data fit. 

An enhanced image of the target can be obtained using the fused data, by applying the cross-range 
imaging algorithm defined by Equation (73) to the fused data set. The result is shown in Figure 39(b). 
Observe that over the (30-deg, 80-deg) sector, the dominant scattering occurs from the edge located at 
(-1,0), which is closest to the far-field data region; thus, the enhanced image provides a measure not only 
of the scatterer location, but also of its relative contribution to the data-fusion process over the sector under 
consideration. The high-resolution image can be compared with images obtained from the image integral 
using the original sector data only, as illustrated in Figure 39(a). 
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Figure 38. Data fusion for two-dimensional strip (Example I). 
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TABLE 3 
Estimation of Specular Locations 

Sector 
(deg) 

a 
(deg) 

1 37 
-0.49 
-5.37 

100.7 
47.5 

2 43 
_0.53 
-3.77 

104.9 
51.83 

3 77 
_3.67 
-5.76 

92.2 
86.8 

4 83 
-8.1 
-10.3 

90.1 
88.5 
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Figure 39.  Conventional and enhanced images of two-dimensional strip using fused data (Example I). 
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Example 2: Sparse-Angle Multiband (Narrowband) Data. The second example considers data 
fusion for sensors operating over different frequency bands and located on either side of the specular region 
as defined below: 

Bandl (fQ - 1.5 GHz) 
Sector 1 (37 to 43 deg) -• (p0 = 40 deg 

Sector 2 (69 to 75 deg) -> (p0 = 72 deg 

Band 2 (/"0 = 3 GHz) - 
Sector 3 (130 to 136 deg) -> cp0 = 133 deg 

Sector 4 (157 to 163 deg) -^ cp0 = 160 deg 
(77) 

This case attempts to fuse the data over the entire region (0 deg, 180 deg) at each of the two sensor 
bands. The following assumptions are made for simplicity: an L-band sensor (/0 = 1.5 GHz) over sectors 1 
and 2 and an S-band sensor (f0 = 3 GHz) over sectors 3 and 4. 

Figure 40(a) illustrates each sector's match to the "real part" of the data at each frequency using the 
cross-range poles estimated using the techniques in [1]. Using the value of a associated with the dominant 
pole over the four sectors, obtain cp5« 94.6 deg from Equation (78). The cross-range image is illustrated in 
Figure 40(b), where the peaks at x = ±1 and v = 0, as well as several ambiguous peaks, are evident. In 
practice, after thresholding the image, the image-peak search algorithm selects multiple peak locations. The 
resultant variation of the fused data is illustrated in Figure 40(c) at S-band and in Figure 40(d) at L-band. 
The enhanced image using the fused data (omitting the specular region) is shown in Figure 41(b), as 
compared with the conventional image that uses the sector data only, shown in Figure 41(a). 

Clearly, the fused data's fit over each band is generally good and is degraded only in the region of the 
error in the estimate of the specular. The data fit could be improved by iterating the solution over the 
parameter <ps, as indicated in step 5 of the fusion process. To prevent a clustering of image points in any 
given region, the image data have been filtered about the maximum image point according to 

1^)1 A,^ over |A|<AQ   > (78) 

where A0 = 2X has been chosen for this example, effectively limiting the resolution of the source-location 
algorithm used to spacings greater than 2 A.. 
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Figure 40.  Data fusion for two-dimensional strip (Example 2). 
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(a) Conventional Image (b) Enhanced Image 

Figure 41.  Conventional and enhanced images of two-dimensional strip using fused data (Example 2). 

4.3.3     A Three-Dimensional Example 

The next example considers perhaps the simplest three-dimensional scattering body that exhibits 
shadowing and therefore multiple speculars: a right-circular cone. The cone geometry is illustrated in 
Figure 42(a); the field magnitude over the region 0 to 360 deg is illustrated in Figure 42(b). The cone 
considered has a length of 2 m, comparable with the strip, and a base diameter of 0.5 m, which produces a 
half-cone angle of 6.5 deg and leads to a cone specular at q> = 83.5 deg and cp = 276.5 deg, along with a 
base specular at cp = 180 deg. Typically, the scattering from a sharp nosetip associated with the cone is 
small; for this reason the nose scattering in the example has been enhanced by a transition to a small 
spherical nose of radius 0.1 m. 

Before proceeding to some specific sensor-fusion examples, it is instructive to examine the functional 
form of the diffraction-based solution for backscatter from the right-circular cone base developed by Keller 
[6]. Because of shadowing, the backscatter contribution takes a different form, depending on whether both 
base edges are visible to the sensor. In the region where the base is visible, the solution takes the form 

Em E^m+Ed2m (79) 

where 
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Figure 42. Full-sector enhanced image of right-circular cone. 

I 
1 v/sincpL 

C 
sin(cp -TC). 

e       e (80) 

and where (x^y^ denotes the location of the upper base edge; Ed^(fw) is given by Equation (80), with (j> 
replaced by -cp, and C, and C2 are constants independent of/ and cp. Examination of Equation (80) 
indicates that because of the three-dimensional nature of the base-edge specular (caustic), which occurs at 
cp = TC , the form for the diffraction basis set defined by Equation (55) must be generalized. As the solution 
to Equation (80) approaches the specular, 

EdxW~\--J7T. ; 
v/ sin      (cp - TC) 

-]uxx   -yvy, 
e       e (81) 
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3/2 and the field amplitude grows inversely to sin (cp). The validity of this functional form can readily be 
seen by comparing Equation (81) with the physical optics solution's near-specular: 

, (Ana .    \ 
7,1—sincpj 

£^>-     4,«. • <82> 
-T— sincp 

A. 

Noting that for jjcj large, J^(x)~ sin(x-3n/4)/Jx , Equation (82) has an envelope consistent with 
Equation (81) as <p -»n ; thus the conclusion that for specular responses from flat surfaces, as opposed to 
curved specular surfaces such as the cone speculars at cp = 83.5 deg and cp = 276.5 deg, the diffraction 
basis set takes the more general form of Equation (56), with C0 = 0 and K2 = 3/2 . 

Figure 42(c) illustrates the entire 0- to 360-deg sector-enhanced contour image of the right-circular 
cone at (/"= 3 GHz) , using the cross-range image algorithm defined by Equation (83). The full-sector 
scattering pattern is illustrated in Figure 42(b), and two views of the enhanced image are shown in 
Figure 42(c) and Figure 42(d). Observe the variation of the scattering pattern corresponding to each 
specular off the side of the cone (<p a 83 deg) and off the base of the cone. The enhanced image elucidates 
the presence of the three scattering points, i.e., the base edges and spherical nosetip. 

Example 1: Side Specular. Consider now the application of the fusion algorithm defined earlier. Two 
examples are considered, each restricting the region over which the data are fused to a given specular. For 
the first example, consider the side specular for which the estimate of q>4 from the "measurement" data set 
is given by Equation (68). Assume that data are collected by each of two sensors over the sectors given by 

Sector 1: (43 to 47 deg),   (cp, =45 deg) 

Sector 2: (73 to 77 deg),   (<p2 = 75 deg) 

Assume further that each sensor is narrowband and operates at /0 = 3 GHz . Figure 43(a) illustrates the 
"real part" of the known data over each of the sectors; superimposed on this plot is the local all-pole model 
data fit to each sector. The two results are essentially identical. Applying the source-location estimation 
algorithm produces the result illustrated in Figure 43(b), from which the base edge and nosetip are clearly 
evident. Figure 43(c) and Figure 43(d) illustrate the result of fusing and extrapolating these data over a 
100-deg sector located over 20 to 120 deg, including the specular region, using only the base edge 
[Figure 43(c)] and both the nose and the base edge [Figure 43(d)]. Observe that the specular estimate 
using Equation (68) is quite close to the actual specular and that adding the nose to the base-edge contribu- 
tion fills in the oscillations in the scattering pattern. 

60 



s 
I 
a. 

0.2 

0.15 

0.1 

0.05 

0 U                ) 
-0.05 r 
-0.1 

-0.15 

-0 2 
c 20 40          60          80 

Angle (deg) 
100      12 

(a) Data Fit to Known Segments (b) Point Source Location 

i 

0.9 

.0.8 

5 0.7 
t0.6 

0.5 

?0.3 

"0.2 

0.1 

20   30   40   50   60    70   80   90  100  110 120 
Angle (dag) 

(c) Data Fusion -Base and Nose 

o. 
.0. 

1° 
|0 

< 0. 

1° 
• o 
o: 

o 

20    30    40    50   60    70   80    90 100   110 120 

Angle (dag) 

(d) Data Fusion-Base Edge Only 

Figure 43.  Data fusion for right-circular cone: example I. 

Example 2: Base Specular. For the base specular, the estimate of ys given by Equation (68) must 
change, as Equation (68) is no longer valid for K = 3/2 . The modified form for Equation (68) for arbitrary 
K is given by 

(J),~cp0 + tan     (K/aJ (83) 

If K is known a priori, Equation (83) can be used directly; however, this is generally not the case. For this 
reason, an alternative algorithm has been developed for estimating both cp^ and K from sparse-angular 
measurements for the special case where the angular sectors are associated with the same specular. This 
algorithm could be readily extended to the case of multiple speculars, but as this extension has not yet been 
done, the examples given are restricted to same-specular examples. The algorithm proceeds as follows: for 

61 



each subsector under consideration, select the largest-amplitude coefficient from the local all-pole fit to the 
given data set and characterize the amplitude of this pole by the expression 

*. - KJ.-*-*"" • m 
where U^J denotes the largest-amplitude coefficient, amax denotes the corresponding pole's "real part," 
and cp0 is the center of the subsector. This process is carried out for each subsector under consideration, 
and the data are concatenated into a larger vector string. Denote the concatenated data fit as A(q), then 
choose ys and K as the best fit of D(f0, <p, K, cp5) given by Equation (58) to A(<$) over those regions con- 
taining the measurements; i.e., 

[K,ys] =   max <|^(<p) - \D(fQ, q>, K, cp5)||
2>      , (85) 

K,q> 

where the notation ( • ) denotes an average over the known observation angles. 

To illustrate this process, consider fusing data associated with the base specular and assume the 
"measurement" data set is known over four angular sectors given by 

Sector 1: (148 to 152 deg), cp0 = 150 deg 

Sector 2: (158 to 162 deg), <p0 = 160 deg 

Sector 3: (203 to 207 deg), cp0 = 205 deg 

Sector 4: (213 to 217 deg), q>0 = 215 deg 

As in Example 1, assume each sensor is narrowband and operates at f0 = 3 GHz . Figure 44(a) illustrates 
the "real part" of the known data over each sector; superimposed on this plot is the local all-pole model 
data fit to each sector. Once again the two results are essentially identical. Figure 44(b) illustrates the 
results of the source-location estimation algorithm; note that the two base edges are clearly visible and that 
there is a lower-level indication of the nosetip, along with several ambiguous estimates. Because the nose 
region is shadowed over most of the base region, the data are fused using only the base-edge locations. The 
surface generated using Equation (84) for estimating cp5 and K is illustrated in Figure 44(d). The 
maximum occurs at k ~ 2 and cp5 = 180 deg; this surface is a weak function of K but is very sharp in 
estimating ys. Using these values, the fused data are illustrated in Figure 44(c), compared with the true 
data set over the 100-deg region shown. 

The value of K resulting from the optimization defined by Equation (84) is different than the K = 1.5 
predicted by Equation (81), although the fit to the data is remarkably good, because of the inability of the 
two edge scatterers to characterize the specular fully in the immediate region of the large specular response. 
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Figure 44. Data fusion for right-circular cone: example 2. 

4.3.4     Static-Range Data 

The examples above illustrate the practicability of the techniques developed on increasingly realistic 
physical targets. The final example considers applications of these techniques to actual measurement data, 
using static-range measurement data from the canonical target considered in [1]. The canonical target is 
illustrated in Figure 45(a): a monoconic model of a reentry vehicle 1.6-m long. The spherical nosetip of the 
reentry vehicle has a 0.22-cm radius; the nose section is made from a solid piece of machined aluminum 
with two grooves and one seam. The first groove, which is approximately 3-mm deep and 6-mm wide, is 
located 22 cm from the nosetip. The second groove is approximately 2-mm deep and 4-mm wide and is 
located 44 cm from the nosetip. The midbody of the reentry vehicle is made from a single sheet of rolled 
aluminum with one groove, one slip-on ring, and three seams. The aluminum slip-on ring (not shown in the 
photo) is approximately 5-mm thick and 10-mm wide and is placed 1.4 m from the nosetip. 
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Static-range data were measured on this target from 12 to 18 GHz over an angular region from -95 to 
95 deg. Figure 45(b) illustrates the radar cross section of the target at 12 and 18 GHz, as indicated in the 
figure. The data region is wide enough to include the 0-deg nose-on specular that is due to the spherical 
nosetip and axially symmetric rings, as well as the cone's side specular. Scattering from the side grooves 
and ring covers a wide dynamic range, as discussed in [1]. This makes a challenging target for the techniques 
described in this report. 

This data-fusion example assumes two narrowband sensors, one at 12 GHz and the other at 18 GHz, 
each interrogating the target over a 90-deg sector. This example focuses on the source-estimation process, 
which illustrates that the source-location algorithm developed here is indeed capable of identifying the 
correct scatterers; characterization of each scatterer and estimation of Dm(J\ip) from limited sector data for 
each source will be the focus of a subsequent report. To estimate the source locations, i.e., to develop a fused 
image, subdivide the known data region into a sequence of 8-deg subsectors and apply the source-estimation 
algorithm to this sliding block of data. The measured data and the local all-pole fit to the data as the 
subsector is incremented in steps of 0.1 deg are illustrated in Figure 46(b). The fused image is illustrated in 
Figure 46(c) and (d). All the source locations are clearly identified, the large dynamic range not- 
withstanding. The threshold parameter TQ defined in Equation (73) is critical to obtaining a large dynamic- 
range image: essentially it has the effect of reducing the contribution of the very large scatterers. 
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(b) Measured Data 

Figure 45.   Static-range data on test article. 
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Figure 46.   Fused narrowband image of test article. 

Figure 47 illustrates the effect of varying the parameter 7"0 on the resultant source-location image. A 
sequence of images is presented for T0= 1.0, 0.01, 0.001, and 0.0001, respectively, as noted in the figure. 
Observe that for TQ = 1.0 the base edges and the attached ring dominate the image; as TQ decreases, the 
smaller scatterers begin to appear. At r0 = 0.0001 the contributions from each scattering center are 
essentially equalized. 
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Figure 47.   Effect of variable threshold (18 GHz). 
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5.   COHERENCE EFFECTS 

The problem caused by mutual incoherence between the data from sensor 1 and that from sensor 2 is 
now considered, for which the reader is encouraged to refer back to Figure 3 and Section 1. The problem is 
examined by considering the example discussed in Section 4.1.1 and illustrated in Figure 15. For simplicity 
and to illustrate the effects best, consider only the effect of a range-track estimation error (recall Table 1 for 
the general categories of mutual incoherence). Assume a range-estimation error of 0.1 m for sensor 2 
compared with sensor 1. As a result of this range-estimation error, range-delay phase compensations are also 
in error, and mutual incoherence occurs between data sets. Figure 48 illustrates the image that results from 
performing ultrawide-bandwidth processing of the S- and X-band data without correction. 

A comparison of Figure 23 and Figure 48 shows that significant image degradation results from 
mutual incoherence between spatially separated sensors; thus, it is essential that data from multiple sensors 
be mutually coherent before performing ultrawide-bandwidth processing for enhanced radar imaging. The 
data will be cohered using the method described in [1] before generating an image. 

The method used here to cohere the two data sets applies an all-pole model of the form 

M 

E(/n) = X aym (86) 
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Figure 48.  Ultrawide-bandwidth processing of noncoherent data from sensors 1 and 2. 
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to the data output from sensors 1 and 2. Each pole characterizes the relative range of a scatterer and its 
frequency-dependence (if its field amplitude varies with frequency). Details of the all-pole modeling 
technique used in this example can be found in [1]; briefly, the method uses a singular-value 
decomposition of the forward-prediction matrix for each data set, given by 

H sl(s2)~ 

SN-L SN-L + 

.  Sr 

S, 

SN- 

(87) 

where H$1,s2) has the form of a Hankel matrix whose eigenstructure can be exploited to estimate the 
parameters of linear time-invariant signal models. The singular-value decomposition decomposes each 
matrix into the product of three matrices: 

Hsl(s2) =     Usl(s2) Ssl(s2) V'sl(s2) (88) 

where the prime symbol denotes the Hermitian operator. The Ssl(s2) matrices contain the singular values 
for their respective data sets; the Us](s2) and Vsl(s2) matrices contain the corresponding eigenvectors. The 
columns of Vsl(s2) correspond to the eigenvectors of the covanance matrix for each sensor, and the 
matrices are used to estimate the model order Ps](s2) for each data set. The estimated model orders Psus2) 
are used to partition Vsl(s2) into orthogonal signal-plus-noise and noise subspaces. A modified 
root-MUSIC algorithm is then used to estimate the signal poles for each set of data. The all-pole model 
amplitude coefficients am       are found using a linear least-squares fit to the data. 

Figure 49 shows the resulting pole estimates for the S- and X-band sensor data. Because of the lack 
of mutual coherence, the X-band signal poles do not line up with S-band signal poles. Coherence is achieved 
by rotating the X-band poles until they optimally match the S-band poles, which has the effect of 
phase-aligning the data from both sensors. 
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Figure 49. Signal poles of data output from sensor 1 (S-band) and sensor 2 (X-band). 

Figure 50 shows the X-band poles that result after rotation to optimally match the S-band poles. The 
original X-band data, E(fn,q>) , is now replaced by mutually coherent data, E(fn,q>) , given by 

£(/>) = £(/»* 
y'(C, + C2n) 

(89) 

where C, and C2 correspond to the X-band pole rotation. 

Figure 51 is the image generated from the original S-band data plus the modified X-band data that 
were generated from the all-pole model after rotating pole locations to match optimally those of the S-band 
model. A comparison of Figure 23, Figure 48, and Figure 51 clearly shows the importance of mutually 
cohering multisensor data before generating an image. 
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Figure 50. X-band poles after rotation to match S-bandpoles. 
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Figure 51.  Image from combined sensor data after phase alignment. 
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6.   SUMMARY 

There is considerable interest within the ballistic missile defense community for the various theater 
and area-defense systems to operate as a family of systems. A key ingredient in fully accomplishing this 
objective is the capability to fuse signature data from a variety of sensors operating over different frequency 
bands and interrogating a target over diverse angular positions. This report develops (1) a framework for 
fusing signature data for this diverse operating scenario, (2) candidate sensor-fusion algorithms, and (3) a 
general formulation characterizing the practical problem of cohering data associated with multiband 
spatially distributed sensors. The report illustrates the formulation by considering numerous examples, 
transitioning from simple illustrative targets to progressively more difficult and physically realistic targets. 
The report begins with a constant-amplitude point-scatter model, progresses to three-dimensional targets, 
and ends by illustrating enhanced image-fusion algorithms applied to static-range data. 

In some sense this report can be considered a complement to the ultrawide-bandwidth development 
presented in [1], which develops the general formulation for fusing signature data from sparse-band 
collocated sensors. This report focuses primarily on the complementary problem of sparse-angle sensor 
fusion, where three main effects complicate the fusion process: specular responses, diffraction from 
discontinuities, and shadowing. These effects prohibit the use of a constant-amplitude point-scatter model 
for characterizing the target over broad angular regions, which is clearly evident from the geometrical theory 
of diffraction, where Equation (51) elucidates the complex-amplitude variation Dm(/",<p) required to 
characterize a given discontinuity. 

For the constant-amplitude point-scatter model, it is possible to develop a two-dimensional wideband 
all-pole formulation for fusing sparse-angle multiband data by transforming the problem from (/",<p) space 
to (u,v) space, as defined in Equation (13); in the general case, however, the diffraction coefficient Dm(f,q>) 
is not readily characterized in (w,v) space. To circumvent this problem, a new basis-expansion set was 
developed based on the diffraction from a wedgelike discontinuity and generalized to a broader class of 
discontinuities, as illustrated in Figure 32. Use of this basis set allows the use of a localized all-pole model 
over a limited angular sector and the fusion of these data using the generalized expansion defined by 
Equation (65) and Equation (66). A candidate fusion algorithm was developed and described in 
Section 4.3.2 and was then applied to numerous examples. 

A striking duality was demonstrated between sensor coherence for sparse-band collocated sensors 
and sparse-angle narrowband sensors; this duality is summarized in Figure 14. For collocated sensors, 
range-bias errors lead to an offset of the wideband pulse processed by each sensor. If these pulses are 
combined without compensating for the range-bias error, the relative position of the scatterers indicated by 
the wideband compressed pulse do not match, resulting in misidentification of the number of scattering 
centers. The locations of these scatterers for each subband are characterized by a pole plot for each subband 
spectral estimate and the pole-rotation angle, which causes the respective subband pole estimates to coalesce 
into one that characterizes the delay and range-bias errors. Analogously, for narrowband sensors with 
different look angles to the target, processing each subsector leads to a cross-range profile of the target. If 
these cross-range profiles are lined up without angle-bias compensation, common scattering points do not 
coincide, and once again a misidentification of scattering centers occurs. 
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The above discussion can be easily extrapolated to the general case of two wideband sensors located 
at different angular positions. Each sensor is capable of forming an image of the target, with image quality 
dependent on subbandwidth (range resolution) and angular sector size (cross-range resolution). Proper 
multisensor fusion allows coherent combination of these images, for improved image quality. Range- and 
system-delay mismatches between sensors result in "range" misalignment of each image, angle-bias errors 
result in cross-range misalignment, and phase errors result in less coherent processing gain in combining 
corresponding image points. Coherent signature fusion can be accomplished only when sensors are 
mutually cohered to eliminate these misalignments and phase errors. 
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